Radio receiver filter specifications

- notes and overview about the basics of radio receiver filter specifications, parameters and performance including details of shape factor, stop-band, pass-band, etc.

When defining a filter for use within a radio receiver, it is necessary to specify the various parameters in order that the filter performs in the correct manner. There are a number of different filter specifications that can be used, some used in different applications.

Radio receiver filter specifications

There are many different filter specifications that can be used to define the performance of a filter:

  • Stop-band
  • Pass-band
  • In-band ripple
  • Stop-band ripple
  • Shape factor
  • Response mask
  • Input and output impedance
  • Intermodulation

The various filter specifications and parameters are described in greater detail below.

Filter parameters

There are two main areas of interest for a filter, the pass band where it accepts signals and allows them through, and the stop band where it rejects them. In an ideal world a filter would have a response something like that shown below. Here it can be seen that there is an immediate transition between the pass band and the stop band. Also in the pass band the filter does not introduce any loss and in the stop band no signal is allowed through.

Filter response

The response of an ideal filter

In reality it is not possible to realise a filter with these characteristics and a typical response more like that shown below. It is fairly obvious from the diagram that there are a number of differences. The first is that there is some loss in the pass band. Secondly the response does not fall away infinitely fast. Thirdly the stop band attenuation is not infinite, even though it is very large. Finally it will be noticed that there is some in band ripple.

Filter response
Typical response of a real filter

In most filters the attenuation in the pass band is normally relatively small. For a typical crystal filter figures of 2 - 3 dB are fairly typical. However it is found that very narrow band filters like those used for Morse reception may be higher than this. Fortunately it is quite easy to counteract this loss simply by adding a little extra amplification in the intermediate frequency stages and this factor is not quoted as part of the receiver specification.

It can be seen that the filter response does not fall away infinitely fast, and it is necessary to define the points between which the pass band lies. For receivers the pass band is taken to be the bandwidth between the points where the response has fallen by 6 dB, i.e. where it is 6 dB down or -6 dB.

A stop band is also defined. For most radio receiver filters this is taken to start at the point where the response has fallen by 60 dB, although the specification for the filter should be checked this as some filters may not be as good. Sometimes a filter may have the stop band defined for a 50 dB attenuation rather than 60 dB.

Filter shape factor

It can be seen that it is very important for the filter to achieve its final level of rejection as quickly as possible once outside the pass band. In other words the response should fall as quickly as possible. To put a measure on this, a figure known as the shape factor is used. This is simply a ratio of the bandwidths of the pass band and the stop band. Thus a filter with a pass band of 3 kHz at -6dB and a figure of 6 kHz at -60 dB for the stop band would have a shape factor of 2:1. For this figure to have real meaning the two attenuation figures should also be quoted. As a result the full shape factor specification should be 2:1 at 6/60 dB.

Filter types

There is a variety of different types of filter that can be used in a receiver. The older broadcast sets used LC filters. The IF transformers in the receiver were tuned and it was possible to adjust the resonant frequency of each transformer using an adjustable ferrite core.

Today ceramic filters are more widely used. Their operation is based on the piezoelectric effect. The incoming electrical signal is converted into mechanical vibrations by the piezoelectric effect. These vibrations are then affected by the mechanical resonances of the ceramic crystal. As the mechanical vibrations are then linked back to the electric signal, the overall effect is that the mechanical resonances of the ceramic crystal affect the electrical signal. The mechanical resonances of the ceramic exhibit a high level of Q and this is reflected in its performance as an electrical filter. In this way a high Q filter can be manufactured very easily.

Ceramic filters can be very cheap, some costing only a few cents. However higher performance ones are also available, and these are likely to be found in scanners and many other receivers.

For really high levels of filter performance crystal filters are used. Crystals are made from quartz, a naturally occurring form of silicon, although today's components are made from synthetically grown quartz. These crystals also use the piezoelectric effect and operate in the same way as ceramic filters but they exhibit much higher levels of Q and offer far superior degrees of selectivity. Being a resonant element they are used in many areas where an LC resonant element might be found. They are used in oscillators - many computers have crystal oscillators in them, but they are also widely used in high performance filters.

Normally crystal filters are made from a number of individual crystals. The most commonly used configuration is called the half lattice filter as shown in Figure 4. Further sections can be added to the filter to improve the performance. Often a filter will be quoted as having a certain number of poles. There is one pole per crystal, so a six pole crystal filter would contain six crystals and so forth. Many filters used in amateur communications receivers will contain either six or eight poles.

Crystal filter
A basic half lattice crystal filter section

Choosing the right filter bandwidth

It is important to choose the correct bandwidth for a give type of signal. It is obviously necessary to ensure that it is not too wide, otherwise unwanted off-channel signals will be able to pass though the filter. Conversely if the filter is too narrow then some of the wanted signal will be rejected and distortion will occur. As different types of transmission occupy different amounts of spectrum bandwidth it is necessary to tailor the filter bandwidth to the type of transmission being received. As a result many receivers switch in different filters for different types of transmission. This may be done either automatically as part of a mode switch, or using a separate filter switch. Typically a filter for AM reception on the long and medium wave bands it is around 9 or 10 kHz and on the short wave bands will have a bandwidth of around 6 kHz. For SSB reception it will be approximately 2.5 kHz. For Morse reception 500 and 250 Hz filters are often used.

By Ian Poole

<< Previous   |   Next >>

Read more radio receiver tutorials . . . . .

Superhet radio Sensitivity Software radio Cognitive radio
FM demod AM demod DSP tutorial Selectivity & filters

Share this page

Want more like this? Register for our newsletter

What to consider when incorporating an intelligent touch screen display into your product Markku Rihonnen | 4D Systems
What to consider when incorporating an intelligent touch screen display into your product
Gone are the days of rotary switches, push buttons and seven segment displays. Incorporating touch screen displays into embedded designs is the trend, accelerated of course by consumer adoption of the smartphone.
Online - Effective Vector Network Analyzer Measurements
How to make effective VNA measurements at RF and microwave frequencies

More training courses
 is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy