Radio receiver image response and image rejection

- an overview or tutorial of the basics of superhet receiver image response and image rejection as well as IF breakthrough specifications and their impact on radio communications systems.

The superhet radio receiver is one of the most widely used types of receiver available, being used in a wide variety of radio communications applications from broadcast reception to advanced two way radio communications systems, and fixed and mobile radio applications. One of the important specifications associated with the operation of the superheterodyne radio is its image response or image rejection. Along with this the IF breakthrough is also of importance, although less critical in many applications. However these specifications and parameters of radio receiver performance are of great importance in radios used in all forms of radio communications applications.

What is image response?

The basic concept of the superhet radio means that it is possible for two signals to enter the intermediate frequency (IF) amplifier. For example with the local oscillator set to 5 MHz and with an IF of 1 MHz it can be seen that a signal at 6 MHz mixes with the local oscillator to produce a signal at 1 MHz that will pass through the IF filter. However if a signal at 4 MHz is also able to produce an output at 1 MHz. It is clearly unacceptable to receive signals on two frequencies at the same time and it is possible to remove the unwanted one by the addition of a tuned circuit prior to the mixer

Fortunately this tuned circuit does not need to be excessively sharp. It does not need to reject signals on adjacent channels, but instead it needs to reject signals on the image frequency. These will be separated from the wanted channel by a frequency equal to twice the IF. In other words with an IF at 1 MHz, the image will be 2 MHz away from the wanted frequency.

Removing the image signal
Using a tuned circuit to remove the image signal

Effect of poor image rejection

A receiver with a poor level of image rejection will suffer from much higher levels of interference than one with a high level of image rejection. In view of this, radio receivers to be used in high performance radio communications applications need to have a good image rejection performance.

When a radio receiver has a poor level image rejection signals which should not be received as they are on the image will pass through the IF stages along with the required ones. This means that unwanted signals are received along with the wanted ones and this means that the levels of interference will be higher than those with a high level of image rejection.

In addition to this the image signals will "tune" in the opposite direction to the wanted ones. When they interfere heterodyne notes will be heard and as the receiver is tuned, the pitch of the signals will change. In view of this it is very important to reduce the image response to acceptable levels, particularly for exacting radio communications applications.

Image rejection

It is clearly important to specify the level of image rejection. The specification compares the levels of signals of equal strength on the wanted and image frequencies, quoting the level of rejection of the unwanted signal.

The image rejection of a receiver will be specified as the ratio between the wanted and image signals expressed in decibels (dB)at a certain operating frequency. For example it may be 60 dB at 30 MHz. This means that if signals of the same strength were present on the wanted frequency and the image frequency, then the image signal would be 60 dB lower than the wanted one, i.e. it would be 1/1000 lower in terms of voltage or 1/1000000 lower in terms of power.

The frequency at which the measurement is made also has to be included. This is because the level of rejection will vary according to the frequency in use. Typically it falls with increasing frequency because the percentage frequency difference between the wanted and image signals is smaller.

IF Breakthrough

Another problem which can occur with a superhet occurs when signals from the antenna break through the RF sections of the set and directly enter the IF stages of the radio receiver. Normally intermediate frequencies are chosen so that there are likely to be no very large signals present which might cause problems. However when the radio receiver has a fixed frequency first local oscillator this is not easy to ensure as it will sweep over a band of frequencies.

The specification for breakthrough is quoted in the same fashion as image rejection. Normally it is possible to achieve figures of 60 to 80 dB rejection, and on some receivers figures of 100 dB have been quoted.

The image response or image rejection and IF breakthrough specifications of a superheterodyne radio are of great importance in many radio communications applications. Any receiver with a poor image rejection specification will appear to receive many more signals than one with a high level of image rejection. As many of these signals will result from the poor image rejection, they are not on the actual frequency to which the receiver is tuned.

By Ian Poole

<< Previous   |   Next >>

Read more radio receiver tutorials . . . . .

Superhet radio Sensitivity Software radio Cognitive radio
FM demod AM demod DSP tutorial Selectivity & filters

Share this page

Want more like this? Register for our newsletter

Should I consider AMOLED? Mike Logan | andersDX
Should I consider AMOLED?
LED technology is now being used for many applications not envisaged years ago. One variant of LED technology namely AMOLED, active-matrix organic light-emitting diode, technology is a form that is being used increasingly.
Online - Designing GaN Power Amplifier MMICs
Learn how to design high performance GaN power amplifier MMICs

More training courses

RF Power Measurement Solution for Multi-antenna MIMO Transmissions
Keysight provides this whitepaper detailing a new RF power measurement solution that addresses the revised EN 300 328 v.1.8.1 and EN 301 893 v1.7.1 standard for MIMO.

More whitepapers
 is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy