PLCC, Plastic Leaded Chip Carrier

- essential notes or overview about the SMD PLCC, Plastic Leaded Chip Carrier, an SMT package that can be soldered to a board or used with a socket.

The SMD PLCC or Plastic Leaded Chip carrier is an SMD package that is widely used for many types of integrated circuit. However the SMD PLCC is particularly useful for applications where the integrated circuit may need to be removed on a regular basis as, for example, in the case of a chip containing firmware where no other means of re-programming may be available.

The SMD PLCC also has the advantage that it can be soldered to the board. Having leads on all sides of the chip, the SMD PLCC offers a relatively high connection density.


SMD PLCC basics

An SMD PLCC or plastic leaded chip carrier is a four sided flat integrated circuit package or chip carrier. Rather than using the gull wing leads that are used on the quad flat pack, the SMD PLCC uses a "J" lead format. Here the leads are in the form of a J that is positioned on the edge of the SMD PLCC package with the lower section of the J folding back under the package.

As a result of the lead format the SMD PLCC offers a number of advantages:

  • Space saving:   The "J" lead of the SMD PLCC provides a useful reduction in board area when compared to the gull wing lead of the QFP. As the "J" lead effectively folds back under the package, this provides a significant reduction in real estate usage.
  • Socket compatible:   In some areas, especially when developing new products a socketed chip can be particularly useful, if new builds of a PLD or other chip may be needed. The PLD can be programmed off the board and added to the board to test the overall system operation. While many boards will allow on-board programming, this may not always be achievable.
  • Heat resistance:   In some limited instances, the heat experienced during the soldering process could cause damage to the chip. In this case a socket can be added to the board, and the PLCC inserted after soldering is completed, and no high temperatures will be experienced.

The SMD PLCC can have a variety of formats. Lead counts can vary from 20 up to 84 and body widths range from 0.35 to 1.15 inches. Pin or lead spacing is generally 0.05 inches, i.e. 1.27 mm.


PLCC sockets

One of the major advantages of an SMD PLCC is that the chip can be connected to the circuit via a socket. The same chip format can also be used in the standard SMT format, soldering the PLCC directly to the board. This can have significant advantages when a replaceable chip is needed for development, but then the same chip can be used in production where it can be soldered onto the board.

PLCC sockets may either be surface mounted - the most common, or some through hole versions are also available. Some through hole PLCC sockets may be used with wire wrap techniques for prototyping.

Although it is often possible to extract PLCCs using a small screwdriver, etc., it is far more preferable to use a PLCC extractor tool. This will make extraction of the PLCC far easier, and minimise the possibility of any damage.

By Ian Poole


<< Previous     | Next >>


Share this page


Want more like this? Register for our newsletter






Too good to be true - the cost of counterfeit electronics and how to avoid them Miguel Fernandez | Avnet EMEA
Too good to be true - the cost of counterfeit electronics and how to avoid them
The issue of counterfeit electronic components is one that has troubles the electronics industry - using them can have some major issues, everything from being removed from a preferred suppliers list to a reduction in quality.
Training
Online - Effective Vector Network Analyzer Measurements
How to make effective VNA measurements at RF and microwave frequencies

More training courses

Whitepapers
Using Digital Control Designs for Stable Power Supplies
Find out how to achieve stable power supply designs with fast transient response by using digital control techniques in this whitepaper from Intersil.

More whitepapers










Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy