Discone antenna

- overview, summary, tutorial about the basics of what is a discone antenna for wide band or bandwidth omnidirectional applications.

The discone antenna is widely used where an omnidirectional wide band or bandwidth RF antenna design is needed. It finds many uses, particularly for all type of radio scanning and monitoring applications from the commercial or military monitoring services to the home scanner enthusiast for frequencies above 30 MHz.

Discone overview

The discone antenna receives its name from its distinctive shape. The RF antenna design consists of a top "disc" formulated from a number of elements arranged in a disc at the top, and further elements pointing downwards in the shape of a cone. Although the RF antenna could be made as a full disc and a cone, this would considerably increases its weight and wind loading, which would not be advisable from mechanical considerations.

This type of RF antenna design can operate over frequency ranges of up to 10:1 dependent upon the particular design, and it also offers a relatively low angle of radiation (and reception). This makes it ideal for VHF / UHF applications as its greatest sensitivity is parallel or almost parallel to the Earth. However towards the top of its frequency range it is found that the angle of radiation increases slightly.

Although it is widely used for receiving applications, the discone antenna is less commonly used for transmitting. There are several reasons for this. Although it offers a wide bandwidth, it is not optimised for a particular band of frequencies and is less efficient than many other types of RF antenna design. Additionally the wideband with of the RF antenna means that spurious signals can be radiated more easily and the level of reflected power will vary over the operating range and may rise above acceptable limits in some areas.

Physical aspects of the discone

The basic RF antenna design consists of three main components: the insulator, the cone elements and the disc elements.

Of the RF antenna components the insulator size governs a number of factors of the performance of the antenna. It is made from insulating material and acts to hold the disc and cone elements in place, keeping them a fixed distance apart. In fact this distance is one of the factors that determines the overall frequency range of the particular RF antenna design.

Secondly, the cone elements should be a quarter wavelength at the minimum operating frequency. This can be calculated from the formula A = 75000 / frequency (MHz) millimetres where A is the length of the cone elements.

Thirdly the disc elements should be made to have an overall length of 0.7 of a quarter wavelength. This can be calculated from the formula B = 52550 / frequency (MHz) millimetres. The diameter of the top of the cone is mainly dependent upon the diameter of the coaxial cable being used. This determines the upper frequency limit of the antenna. The smaller the diameter the higher the frequency. For many designs operating in the VHF / UHF region of the radio spectrum it is around 15 millimetres. The spacing between the cone and the disc should be about a quarter of the inner diameter of the cone, i.e. around three of four millimetres.


The way in which the discone operates is relatively complicated, but it can be envisaged in a simplified manner. The disc and cone elements sufficiently simulate an electrically complete disc and cone from which the energy is radiated. As a result the greater the number of elements, the better the simulation, although in reality there is a balance between performance, cost and wind resistance. Often around six elements are used, but the number is not critical.

In operation energy from the feeder meets the RF antenna and spreads over the surface of the cone from the apex towards the base until the vertical distance between the point on the cone and the disc is a quarter wavelength. In this way it is possible for the energy to be radiated or received efficiently.

The RF antenna radiates and receives energy that is vertically polarised, and the radiation pattern is omnidirectional in the horizontal plane. The antenna radiates most of the energy at a low angle which it maintains over the most of the operating range. Typically there is little change over a range of 5:1 and above this a slight increase in the angle.

With the feed point at the top of the RF antenna the current maximum point is also at the top. It is also found that below the minimum frequency the antenna presents a very bad mismatch to the feeder. However once the frequency rises above this point then a reasonable match to 50 ohm coax is maintained over virtually the whole of the band.

By Ian Poole

Share this page

Want more like this? Register for our newsletter

Optimising high level operating systems for embedded applications Yannick Chammings | Witekio
Optimising high level operating systems for embedded applications
Yannick Chammings or Witekio looks at improving user experience of many software driven items: one key method applicable to many systems is to reduce the boot time.
High Voltage DC Distribution
Vicor explains how high-voltage DC distribution is key to increased system efficiency and renewable-energy opportunities.

More whitepapers

Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy