QAM Modulator & Demodulator

- the QAM modulator and demodulator are essential building blocks within an overall QAM system.

The QAM modulator and QAM demodulator are key elements within any quadrature amplitude modulation system.

The modulator and demodulator are used to encode the signal, often data, onto the radio frequency carrier that is to be transmitted. Then the demodulator is used at the remote end to extract the signal from the RF carrier so that it can used at the remote end.

As quadrature amplitude modulation is a complex signal, specialised QAM modulators and demodulators are required.

QAM modulator basics

The QAM modulator essentially follows the idea that can be seen from the basic QAM theory where there are two carrier signals with a phase shift of 90° between them. These are then amplitude modulated with the two data streams known as the I or In-phase and the Q or quadrature data streams. These are generated in the baseband processing area.

A diagram QAM modulator showing the oscillator, mixers and summing blocks as well as the 90 degree phase carrier phase shift between the two halves.
Basic QAM modulator diagram

The two resultant signals are summed and then processed as required in the RF signal chain, typically converting them in frequency to the required final frequency and amplifying them as required.

It is worth noting that as the amplitude of the signal varies any RF amplifiers must be linear to preserve the integrity of the signal. Any non-linearities will alter the relative levels of the signals and alter the phase difference, thereby distorting he signal and introducing the possibility of data errors.

QAM demodulator basics

The QAM demodulator is very much the reverse of the QAM modulator.

The signals enter the system, they are split and each side is applied to a mixer. One half has the in-phase local oscillator applied and the other half has the quadrature oscillator signal applied.

A diagram QAM demodulator showing the oscillator, mixers and splitter blocks as well as the 90 degree phase carrier phase shift between the two halves.
Basic QAM demodulator diagram

The basic modulator assumes that the two quadrature signals remain exactly in quadrature.

A further requirement is to derive a local oscillator signal for the demodulation that is exactly on the required frequency for the signal. Any frequency offset will be a change in the phase of the local oscillator signal with respect to the two double sideband suppressed carrier constituents of the overall signal.

Systems include circuitry for carrier recovery that often utilises a phase locked loop - some even have an inner and outer loop. Recovering the phase of the carrier is important otherwise the bit error rate for the data will be compromised.

By Ian Poole

<< Previous   |   Next >>

Share this page

Want more like this? Register for our newsletter

GaN’s Ground-Floor Opportunity Rudy Ramos | Mouser Electronics
GaN’s Ground-Floor Opportunity
The electronics industry has a major role to play in helping to save energy, by enabling better equipment and new ways of working and living that that are more efficient and environmentally friendly. Maintaining the pace of technological progress is key, but improvements become both smaller and harder to achieve as each technology matures. We can see this trend in the development of power semiconductors, as device designers seek more complex and expensive ways to reduce switching energy and RDS(ON) against silicon’s natural limitations. is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy