LTE Frequency Bands & Spectrum Allocations

- a summary and tables of the LTE frequency band spectrum allocations for 3G & 4G LTE - TDD and FDD.

There is a growing number of LTE frequency bands that are being designated as possibilities for use with LTE. Many of the LTE frequency bands are already in use for other cellular systems, whereas other LTE bands are new and being introduced as other users are re-allocated spectrum elsewhere.

FDD and TDD LTE frequency bands

FDD spectrum requires pair bands, one of the uplink and one for the downlink, and TDD requires a single band as uplink and downlink are on the same frequency but time separated. As a result, there are different LTE band allocations for TDD and FDD. In some cases these bands may overlap, and it is therefore feasible, although unlikely that both TDD and FDD transmissions could be present on a particular LTE frequency band.

The greater likelihood is that a single UE or mobile will need to detect whether a TDD or FDD transmission should be made on a given band. UEs that roam may encounter both types on the same band. They will therefore need to detect what type of transmission is being made on that particular LTE band in its current location.

The different LTE frequency allocations or LTE frequency bands are allocated numbers. Currently the LTE bands between 1 & 22 are for paired spectrum, i.e. FDD, and LTE bands between 33 & 41 are for unpaired spectrum, i.e. TDD.

Definitions of the terms used in defining the LTE bands and LTE frequencies.
LTE frequency band definitions

FDD LTE frequency band allocations

There is a large number of allocations or radio spectrum that has been reserved for FDD, frequency division duplex, LTE use.

The FDD LTE frequency bands are paired to allow simultaneous transmission on two frequencies. The bands also have a sufficient separation to enable the transmitted signals not to unduly impair the receiver performance. If the signals are too close then the receiver may be "blocked" and the sensitivity impaired. The separation must be sufficient to enable the roll-off of the antenna filtering to give sufficient attenuation of the transmitted signal within the receive band.


FDD LTE Bands & Frequencies
LTE Band
Number
Uplink
(MHz)
Downlink
(MHz)
Width of Band (MHz) Duplex Spacing (MHz) Band Gap (MHz)
1 1920 - 1980 2110 - 2170 60 190 130
2 1850 - 1910 1930 - 1990 60 80 20
3 1710 - 1785 1805 -1880 75 95 20
4 1710 - 1755 2110 - 2155 45 400 355
5 824 - 849 869 - 894 25 45 20
6 830 - 840 875 - 885 10 35 25
7 2500 - 2570 2620 - 2690 70 120 50
8 880 - 915 925 - 960 35 45 10
9 1749.9 - 1784.9 1844.9 - 1879.9 35 95 60
10 1710 - 1770 2110 - 2170 60 400 340
11 1427.9 - 1452.9 1475.9 - 1500.9 20 48 28
12 698 - 716 728 - 746 18 30 12
13 777 - 787 746 - 756 10 -31 41
14 788 - 798 758 - 768 10 -30 40
15 1900 - 1920 2600 - 2620 20 700 680
16 2010 - 2025 2585 - 2600 15 575 560
17 704 - 716 734 - 746 12 30 18
18 815 - 830 860 - 875 15 45 30
19 830 - 845 875 - 890 15 45 30
20 832 - 862 791 - 821 30 -41 71
21 1447.9 - 1462.9 1495.5 - 1510.9 15 48 33
22 3410 - 3500 3510 - 3600 90 100 10
23 2000 - 2020 2180 - 2200 20 180 160
24 1625.5 - 1660.5 1525 - 1559 34 -101.5 135.5
25 1850 - 1915 1930 - 1995 65 80 15
26 814 - 849 859 - 894 30 / 40 10
27 807 - 824 852 - 869 17 45 28
28 703 - 748 758 - 803 45 55 10
29 n/a 717 - 728 11
30 2305 - 2315 2350 - 2360 10 45 35
31 452.5 - 457.5 462.5 - 467.5 5 10 5


TDD LTE frequency band allocations

With the interest in TDD LTE, there are several unpaired frequency allocations that are being prepared for LTR TDD use. The TDD LTE bands are unpaired because the uplink and downlink share the same frequency, being time multiplexed.


TDD LTE Bands & Frequencies
LTE Band
Number
Allocation (MHz) Width of Band (MHz)
33 1900 - 1920 20
34 2010 - 2025 15
35 1850 - 1910 60
36 1930 - 1990 60
37 1910 - 1930 20
38 2570 - 2620 50
39 1880 - 1920 40
40 2300 - 2400 100
41 2496 - 2690 194
42 3400 - 3600 200
43 3600 - 3800 200
44 703 - 803 100

There are regular additions to the LTE frequency bands / LTE spectrum allocations as a result of negotiations at the ITU regulatory meetings. These LTE allocations are resulting in part from the digital dividend, and also from the pressure caused by the ever growing need for mobile communications. Many of the new LTE spectrum allocations are relatively small, often 10 - 20MHz in bandwidth, and this is a cause for concern. With LTE-Advanced needing bandwidths of 100 MHz, channel aggregation over a wide set of frequencies many be needed, and this has been recognised as a significant technological problem. . . . . . . . .

Additional information on LTE frequency bands.

By Ian Poole


<< Previous | Next >>


Want more like this? Register for our newsletter











Whitepapers
Redefining LTE for IoT
ARM and NextG-Com explain how LTE with its high data rates, complexity and capacity can be used to provide effective communications for IoT with its lower complexity and data rate requirements.

More whitepapers

Training
Applied Design of RF and Microwave Power Amplifiers (RF10-1014)
Discover how to successfully design RF and microwave power amplifiers on this 2 day course.

More training courses

From Machine to Machine to the Internet of Things
From Machine to Machine to the Internet of Things

Vlasios Tsiatsis, Ioannis Fikouras, Stefan Avesand, Stamatis Karnouskos, Catherine Mulligan, David Boyle, Jan Holler
Machine to machine communications is set to grow at a very fast rate. New...
Read more . .

USA bookstore UK bookstore









Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy