06 Sep 2017

Ultra-high resolution fingerprint technology developed

Leti has announced that the European R&D project known as PiezoMAT has developed a pressure-based fingerprint sensor that enables resolution more than twice as high as currently required by the U.S. Federal Bureau of Investigation (FBI).

The project’s proof of concept demonstrates that a matrix of interconnected piezoelectric zinc-oxide (ZnO) nanowires grown on silicon can reconstruct the smallest features of human fingerprints at 1,000 dots per inch (DPI).

“The pressure-based fingerprint sensor derived from the integration of piezo-electric ZnO nanowires grown on silicon opens the path to ultra-high resolution fingerprint sensors, which will be able to reach resolution much higher than 1,000 DPI,” said Antoine Viana, Leti’s project manager. “This technology holds promise for significant improvement in both security and identification applications.”

The eight-member project team of European companies, universities and research institutes fabricated a demonstrator embedding a silicon chip with 250 pixels, and its associated electronics for signal collection and post-processing. The chip was designed to demonstrate the concept and the major technological achievements, not the maximum potential nanowire integration density. Long-term development will pursue full electronics integration for optimal sensor resolution.

The project also provided valuable experience and know-how in several key areas, such as optimization of seed-layer processing, localized growth of well-oriented ZnO nanowires on silicon substrates, mathematical modeling of complex charge generation, and synthesis of new polymers for encapsulation. The research and deliverables of the project have been presented in scientific journals and at conferences, including Eurosensors 2016 in Budapest.

Most popular news in Electronics components

Qorvo certified for Zigbee Green Power v1.1
Infineon and JD join efforts to build smart IoT ecosystem
High speed current steering logic clock oscillators unveiled
Compound Semiconductor Applications Catapult ready for business
"Clock Tree on a Chip” offers innovative multi-profile support

All news in this channel | All news


Share this page


Want more like this? Register for our newsletter






Object Recognition with 3D Time-of-Flight Cameras and Neural Networks Mark Patrick | Mouser Electronics
Object Recognition with 3D Time-of-Flight Cameras and Neural Networks
Machine vision - the ability for computers to see and recognise the world around us - is becoming more important for a variety of fields, from IoT and manufacturing through to augmented reality.









Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy