26 Feb 2018

Splitting crystals for 2D metallic conductivity

Sheets of electrons that are highly mobile in only two dimensions, known as 2D electron gas, have unique properties that can be leveraged for faster and novel electronic devices. Researchers have been exploring 2D electron gas, which was only discovered in 2004, to see how it can be used in superconductors, actuators, and electronic memory devices, among others.

Researchers at Japan’s Tohoku University, with an international team of colleagues, recently identified the atomic structure of a group of perovskite-related materials showing interesting 2D conductive properties.

The materials are made of strontium, niobium and oxygen atoms, with a layered structure derived from perovskite. These strontium niobate compounds show promise for developing advanced electronics because of their ‘quasi-one-dimensional’ metallic conductivity.

Yuichi Ikuhara of Tohoku University’s Advanced Institute for Materials Research with Johannes Georg Bednorz of Zürich Research Laboratory and colleagues used atom-resolved scanning transmission electron microscopy combined with theoretical calculations to learn how adding oxygen atoms to strontium niobates affects their conductivity. Four different materials formed depending on the concentration of oxygen atoms.

The researchers found that three of the materials were conductors of electricity while the fourth was an insulator. At the atomic scale, they discovered the materials were formed of alternating chain-like and zigzag slabs. Depending on the concentration of oxygen atoms, the chain-like slabs were two, three, or four layers thick, sometimes varying within the same material. The zigzag slabs were insulating layers in all the materials, while the chain-like slabs were conducting layers in three of the four materials.

The team determined that local electrical conductivity within the material directly depended on the shapes of the niobate octahedra in the layers. When positive ions of niobium were displaced toward the centers of the niobate octahedra, a local conducting nature was induced.

2D conducting layers are commonly formed by creating an interface between two insulators. It should now be possible to achieve the same goal by segmenting 3D conducting materials into stacks of 2D conducting layers separated by insulating layers, the researchers say in their study published in the journal ACS Nano. This could lead to applications in the development of 2D electrical conducting materials and devices.

Most popular news in Electronics components

Plessey chooses AIX G5+ C MOCVD tool for microLEDs display innovation
Quick turnaround service for 38999-based fibre optic cable assemblies
Harwin Strengthens its Popular Gecko Series
Renesas expands access to robust portfolio of IP licenses
RS Pro anti-vibration RF/microwave coaxial connector range unveiled

All news in this channel | All news


Share this page


Want more like this? Register for our newsletter






Stray field immunity is essential to magnetic sensing in modern automotive applications Nick Czarnecki | Melexis B. V.
Stray field immunity is essential to magnetic sensing in modern automotive applications
A combination of environmental awareness and consumer demand is driving the automotive industry to produce ever-more efficient vehicles. Whether this is the highly-publicized Electric Vehicles (EV) / Hybrid Electric Vehicles (HEV) or simply updates to the existing internal combustion engine (ICE) based vehicles, modern vehicles are bristling with technology – and this is only set to grow in the future.









Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy