16 Aug 2018

First monolithic, SOI Wi-Fi front-end module

pSemi Corporation (formerly Peregrine Semiconductor), a Murata company focused on semiconductor integration, has introduced the first monolithic, silicon-on-insulator (SOI) Wi-Fi front-end module (FEM)—the PE561221.

Ideal for Wi-Fi home gateways, routers and set-top boxes, this high-performance module uses a smart bias circuit to deliver a high linearity signal and excellent long-packet error vector magnitude (EVM) performance. The PE561221 combines the intelligent integration capabilities of pSemi’s SOI technology and Murata’s expertise in Wi-Fi connectivity solutions and advanced packaging. This 2.4 GHz Wi-Fi FEM integrates a low-noise amplifier (LNA), a power amplifier (PA) and two RF switches (SP4T, SP3T). The monolithic die uses a compact 16-pin, 2 x 2 mm LGA package ideal for either stand-alone use or in 4 x 4 MIMO and 8 x 8 MIMO modules.

“The new IEEE 802.11ax standard is utilizing high-order modulation schemes (1024 QAM) with demanding EVM requirements,” says Colin Hunt, vice president of worldwide sales at pSemi. “Traditional process technologies struggle to keep up with both performance and integration requirements, and only SOI can offer the ideal combination of integration and high performance. This new monolithic Wi-Fi module is a great example of the types of technology and product advancements pSemi and Murata can accomplish together.”

The 2.4 GHz Wi-Fi FEM is based on pSemi’s UltraCMOS technology platform—a patented, advanced form of SOI. With its outstanding RF and microwave properties, SOI is an ideal substrate for integration. When paired with high-volume CMOS manufacturing—the most widely used semiconductor technology—the result is a reliable, repeatable technology platform that offers superior performance compared to other mixed-signal processes. UltraCMOS technology also enables intelligent integration—the unique design ability to integrate RF, digital and analog components on a single die.

The PE561221 leverages the intelligent integration capabilities of UltraCMOS technology to deliver exceptional performance, low power consumption and high reliability with 2 kV HBM ESD rating. Through advanced analog and digital design techniques, the Wi-Fi FEM delivers excellent long-packet EVM performance with less than 0.1 dB of gain droop while operating across the entire -40°C to 85°C temperature range. At -40 dB EVM (MCS9), the output power is +19 dBm with less than 0.05 dBm droop in power output after a 4 milliseconds packet. The IC delivers dynamic error vector magnitude (DEVM) and current consumption without requiring digital pre-distortion (DPD), and it has excellent MCS11 performance for 802.11ax applications.

The PE561221 is the first product in the pSemi Wi-Fi FEM portfolio; the product roadmap includes 5 GHz Wi-Fi FEM solutions.

Most popular news in Wireless technology

ZF's energy harvesting engine now paired with Bluetooth low energy
Panasonic Industry Europe and OpenSynergy cooperate
Murata shrinks NBIoT module and stretches battery life
Vehicle tracking device with a built-in Wi‑Fi hotspot launched
Is LoRa answer for IoT & M2M wireless communications?

All news in this channel | All news


Share this page


Want more like this? Register for our newsletter






GaN’s Ground-Floor Opportunity Rudy Ramos | Mouser Electronics
GaN’s Ground-Floor Opportunity
The electronics industry has a major role to play in helping to save energy, by enabling better equipment and new ways of working and living that that are more efficient and environmentally friendly. Maintaining the pace of technological progress is key, but improvements become both smaller and harder to achieve as each technology matures. We can see this trend in the development of power semiconductors, as device designers seek more complex and expensive ways to reduce switching energy and RDS(ON) against silicon’s natural limitations.









Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy