Op Amp Output Impedance / Resistance

- op-amp output impedance and output resistance detailing its causes and the effects of feedback and other external circuitry.

Like the input impedance, the output impedance of an op amp circuit is also important.

The output impedance determines the load that the circuit can drive and the output level delivered to the next stage.

If the op amp output impedance is high, and the load has a low impedance, then much of the signal will be dissipated in the source resistance or source impedance of the output circuit.

Op amp output impedance / output resistance basics

The output impedance of an operational amplifier, often designated Zo, arises from the fact that the output driver circuit and the associated connections have a defined impedance.

The output impedance can be split for many applications. The resistance element is of primary importance and is the major component of the overall impedance. However for some cases the reactance may also be an issue and this is caused mainly by the series inductance. To be fair, the reactive elements are normally small and are ignored for most op amp applications. Typically the frequencies at which op amps are used, the reactance levels will be small and not affect the circuit operation unduly. However they should not be forgotten as they may have an effect in some instances.

Accordingly the effective equivalent circuit for an op amp with its output resistance can be seen below.

Op-amp output resistance
Op-amp output resistance

As can be seen from the diagram, the op amp output resistance is the DC resistance that appears in series with the output from an ideal amplifier located within the chip. In other words the output resistance can be measured by looking at the voltage drop caused when a defined load is added to the output.

In most cases the output resistance is very low and very little drop will be seen. The major issue is normally that if reaching the limit of the current that the op amp will supply.

Output impedance practical issues

When looking at data sheets to discover the output impedance. Dependent upon the manufacturer, data sheets may list the output impedance under one of two different conditions. Some list closed-loop output impedance while others list open-loop output impedance. Confusingly both tend to use the designation Zo.

For many op amps the small signal impedance values fall between from about 50 Ω and 200 Ω.

Op amp out impedance can particularly be a design issue when using rail-to-rail output op amps to drive heavy loads. Under these circumstances the op-amp is required to drive a much higher voltage range, and current levels are higher, as well as requiring the output stage to reach voltages very close to the rails If the load is mainly resistive, the output impedance will limit how close to the rails the output can go - if voltages very close to the rails are required, this can cause problems. If the load is capacitive, the extra phase shift that this introduces can erode phase margin and lead to instability.

Op amp output drive capability

Another aspect that is linked to the output impedance of an op amp is the output drive capability.

Output drive capability is dependent upon a variety of aspects including the internal and external circuit and other conditions.

Internal factors include aspects such as the output-stage bias current, drive level, circuit architecture and capability as well as the process on which the chip was made.

External factors also influence the drive capability. However these can be controlled more easily as they are affected by the external circuit, although some are less controllable. External factors for the op amp drive capability include output voltage headroom, i.e. the voltage difference relative to supply rails; input overdrive; total supply voltage; dc- vs. ac-coupled load; and junction temperature.

It is obviously necessary to be able to specify the drive capability. Generally this is achieved by taking the output short-circuit current parameter. In general the manufacturer will specify the level of current that guaranteed to flow when the output is tied to ground. For situations where In a single-supply situation, the output is tied to one-half the supply voltage, called Vs/2.

Often two figures may be given, one for conditions where the op amp is sourcing current and another for the situation where the op amp is sinking current.

Using these figures it is possible to determine the behaviour of the op amp where the voltage swing across the load is low, and therefore the internal output-stage is able to maintain a large voltage headroom to the respective supply rails.

By Ian Poole

<< Previous   |   Next >>

Share this page

Want more like this? Register for our newsletter

The Developing Role of Electronic Component Distributors Ian Poole | Electronic Notes
The Developing Role of Electronic Component Distributors
The service that electronic component distributors has provided over the years has changed very significantly. Nowadays, distributors provide a very effective service, meeting the many needs of development, manufacturing and service organisations small and large.

Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy