EDGE MCS Coding Schemes

- a summary, overview or tutorial about the basics of the GSM EDGE data coding and error correction and MCS classes.

Most of the data being sent over an EDGE link will consist of TCP/IP packets. These packets are longer than a single EDGE packet payload and therefore it is necessary to split the TCP/IP packets into smaller section and these are known as "chunks". These chunks have defined sizes and may consist of one of 22, 28, 34, or 37 bytes or "octets". The 37 octet chunk may be made directly of data to be transmitted, or it may be a 34 octet chunk which is then padded by adding three dummy octets.

There are nine different Modulation and Coding Schemes (MCS) that can be used with EDGE. Each one is designated a number in the region 1 to 9. These allow different degrees of error protection (and coding rate) and this results in a change in the net data throughput. The system detects the number of bit errors and adjusts the coding scheme accordingly. It naturally endeavours to adopt the scheme that will result in the highest throughput, but will adjust itself according to the prevailing conditions, changing as required.

The different coding schemes are grouped into three classes or families which are referred to by letters, as classes A, B and C. The coding schemes within a class are used together and complement each other. Family A consists of MCS-3, MCS-6, MCS-8, and MCS-9. Family B consists of MCS-2, MCS-5, and MCS-7. Finally family C consists of MCS-1, and MCS- 4. The advantage of grouping the families together in this way is that if a block transmitted in one of the coding schemes is not acknowledged, then it can be sent as two blocks, for example with a coding scheme in the same family. For example if a block transmitted using MCS-7 is corrupted then it can be re-sent as two blocks using MCS-5 or four using MCS-2.

MCS Scheme Name Effective Coding rate Modulation Format Data Rate for One Slot
MCS-1 0.53 GMSK 8.8
MCS-2 0.66 GMSK 11.2
MCS-3 0.8 GMSK 14.8
MCS-4 1.0 GMSK 17.6
MCS-5 0.37 8PSK 22.4
MCS-6 0.49 8PSK 29.6
MCS-7 0.76 8PSK 44.8
MCS-8 0.92 8PSK 54.4
MCS-9 1 8PSK 59.2

By Ian Poole

<< Previous   |   Next >>

Share this page

Want more like this? Register for our newsletter

Stray field immunity is essential to magnetic sensing in modern automotive applications Nick Czarnecki | Melexis B. V.
Stray field immunity is essential to magnetic sensing in modern automotive applications
A combination of environmental awareness and consumer demand is driving the automotive industry to produce ever-more efficient vehicles. Whether this is the highly-publicized Electric Vehicles (EV) / Hybrid Electric Vehicles (HEV) or simply updates to the existing internal combustion engine (ICE) based vehicles, modern vehicles are bristling with technology – and this is only set to grow in the future.

Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy