07 Dec 2017

Nanopower PMICs extend battery for “always-on” connected applications

Dialog Semiconductor, a provider of highly integrated power management, AC/DC power conversion, charging, and Bluetooth low energy technology, has unveiled its first nanopower PMICs, the DA9230 and DA9231.

Consuming only 750 nA of total input current with the buck enabled and under no load conditions, the two new PMICs are the smallest of their class on the market, enabling longer battery operating time and enhanced efficiency for “always on” IoT applications.

With a predicted 12 percent annual increase in the number of connected devices worldwide from 2017 to 2030 according to IHS1, consumer demands for increased efficiency are growing, particularly when it comes to battery life and functionality. However, engineers have faced challenges when trying to balance small form factors with the need for greater battery life, often resulting in devices with inefficient power management or limited battery capacity.



Dialog’s DA9230 and DA9231 will enhance the battery life and power efficiency of common IoT devices such as wearables, smart door locks, portable medical devices and remote sensors. The PMICs improve battery life with ultra-low quiescent current, high-efficiency and configurability, all offered in a small footprint to fit into space-constrained applications. One of the strongest features of DA9230 and DA9231 is the form factor, as the smallest PMICs on the market when measuring up against other comparable chipsets. Other PMICs on offer either lack multiple rails and I2C configurability in one chip, or take up twice the size as Dialog’s offering.

Designed to support current and future platforms, the DA9231 features a 300mA buck together with a 100mA LDO and the DA9230 features a standalone buck. For both devices, the buck regulator’s minimum output voltage of 0.6V enables powering advanced 14 or 10 nm geometry SOCs.

With a minimum supply voltage of 2.5V, these devices are also ready to support upcoming silicon anode battery technology.

“Our first nanopower offering, the most compact and efficient PMICs we have created, exemplifies Dialog’s leadership position in the power management space,” said Paul Wheeler, VP Mobile Systems, Dialog Semiconductor. “As IoT and wearable devices continue to flood the market and consumer demands for extended battery life and additional functionality increase, these new PMICs give designers the flexibility, space and power to improve always-on battery-powered applications.”

Most popular news in Power management

Lamppost EV charging points brought to market
PBF introducesn ew standard in high performance industrial power supplies
XP Power acquisition of Glassman High Voltage expands addressable market
Bidirectional 48V/12V NBM converter for data centers/automotive
Isolated power converters support Class B system EMI levels

All news in this channel | All news


Share this page


Want more like this? Register for our newsletter






Next Generation Freight Transport Mark Patrick | mouser Electronics
Next Generation Freight Transport
As road freight transport levels continue to grow, concerns about the impact on the environment and human health come sharply into focus. Fossil fuel dependency makes it a leading source of greenhouse gas (GHG) emissions, but shifting freight to other transportation modes will prove challenging. Solutions that will improve the efficiency and performance of road freight transport are therefore essential to achieve defined environmental goals. In this blog, we will explore a potential solution that has been pioneered by Siemens - called eHighway. This combines the efficiency of electrified railways with the flexibility of trucks in order to form an innovative, next generation freight traffic system that is efficient, economical and environmentally friendly.









Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy