02 Mar 2018

Cut power supply size and charge time in half

Texas Instruments has introduced several new power management chips that enable designers to boost efficiency and shrink power-supply and charger solution sizes for personal electronics and handheld industrial equipment.

Operating at up to 1 MHz, TI’s new chipset combines the UCC28780 active clamp flyback controller and the UCC24612 synchronous rectifier controller to help cut the size of power supplies in AC/DC adapters and USB Power Delivery chargers in half. For battery-powered electronics that need maximum charging efficiency in a small solution size, the bq25910 6-A three-level buck battery charger enables up to a 60 percent smaller-solution footprint in smartphones, tablets and electronic point-of-sale devices.

"Consumers want faster charging in a smaller footprint. These new solutions not only accomplish that, but also enable designers to do more than they could before with less power," said Steve Lambouses, TI vice president, High Voltage Power.

Active clamp flyback chipset meets modern efficiency standards

Designed to work with both gallium nitride (GaN) and silicon (Si) FETs, the UCC28780’s advanced and adaptive features enable the active clamp flyback topology to meet modern efficiency standards. With multimode control that changes the operation based on input and output conditions, pairing the UCC28780 with the UCC24612 can achieve and maintain high efficiency at full and light loads.

Double the power density: The chipset delivers efficient operation at up to 1 MHz, enabling a size reduction of 50 percent and higher power density than solutions today.

High efficiency: Multimode control enables efficiency up to 95 percent at full loads and standby power of less than 40 mW, exceeding Code of Conduct (CoC) Tier 2 and U.S. Department of Energy (DoE) Level VI efficiency standards. For designs above 75 W, engineers can also pair the chipset with a new six-pin power-factor correction (PFC) controller, the UCC28056, which is optimized for light-load efficiency and low standby power consumption to achieve compliance with mandatory International Electrotechnical Commission (IEC)-61000-3-2 AC current harmonic limit regulations.

Simplified design: Using features such as adaptive zero voltage switching (ZVS) control, engineers can easily design their systems with a combination of resistor settings and controller auto-tuning.

Three-level buck battery charger enables higher charging efficiency

Leveraging an innovative three-level power-conversion technology, the bq25910 enables up to 50 percent faster charging compared to conventional architectures by dramatically reducing thermal loss.

  • Small solution size: With integrated MOFSETs and lossless current sensing, the bq25910 reduces printed circuit board (PCB) space and allows designers to use small 0.33-µH inductors, saving even more space.

  • Faster charging: The bq25910 enables 95 percent charging efficiency, which could take a standard smartphone battery from empty to 70 percent charged in less than 30 minutes.

  • Flexible system design: A differential battery-voltage sense line enables fast charging by bypassing parasitic resistance in the PCB for more accurate voltage measurements, even if the battery is placed away from the charger in the system.

Most popular news in Power management

Lamppost EV charging points brought to market
PBF introducesn ew standard in high performance industrial power supplies
XP Power acquisition of Glassman High Voltage expands addressable market
Bidirectional 48V/12V NBM converter for data centers/automotive
Isolated power converters support Class B system EMI levels

All news in this channel | All news


Share this page


Want more like this? Register for our newsletter






Next Generation Freight Transport Mark Patrick | mouser Electronics
Next Generation Freight Transport
As road freight transport levels continue to grow, concerns about the impact on the environment and human health come sharply into focus. Fossil fuel dependency makes it a leading source of greenhouse gas (GHG) emissions, but shifting freight to other transportation modes will prove challenging. Solutions that will improve the efficiency and performance of road freight transport are therefore essential to achieve defined environmental goals. In this blog, we will explore a potential solution that has been pioneered by Siemens - called eHighway. This combines the efficiency of electrified railways with the flexibility of trucks in order to form an innovative, next generation freight traffic system that is efficient, economical and environmentally friendly.









Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy