03 Oct 2017

Xilinx Zynq UltraScale+ RFSoC Family for RF Applications

Xilinx has announced delivery of its Zynq® UltraScale+™ RFSoC family of programmable chips that integrate the RF signal chain into an SoC. The applications for th enew Zynq UltraScale RFSoCs includesr 5G wireless, cable Remote-PHY, and radar.

Based on 16nm UltraScale+ MPSoC architecture, the All Programmable RFSoCs monolithically integrate RF data converters for up to 50-75 percent system power and footprint reduction, and soft-decision Forward Error Correction (SD-FEC) cores to meet 5G and DOCSIS 3.1 standards. With silicon samples already shipping to multiple customers, the early access program for the Zynq UltraScale+ RFSoC family is now available.

Zynq RFSoCs combine RF data converters and SD-FEC cores with high performance 16nm UltraScale+ programmable logic and ARM® multi-processing system to create a comprehensive analog-to-digital signal chain. While RF to digital signal conditioning and processing is typically segmented into stand-alone subsystems, the Zynq UltraScale+ RFSoC brings analog, digital, and embedded software design onto a single monolithic device for system robustness. Devices in the family feature:

  • Eight 4GSPS or sixteen 2GSPS 12-bit ADCs

  • Eight to sixteen 6.4GSPS 14-bit DACs

  • Integrated SD-FEC cores with LDPC and Turbo codecs for 5G and DOCSIS 3.1

  • ARM processing subsystem with Quad-Core Cortex™-A53 and Dual-Core Cortex™-R5s

  • 16nm UltraScale+ programmable logic with integrated Nx100G cores

  • Up to 930,000 logic cells and over 4,200 DSP slices

Applications addressed by the Zynq RFSoC family include remote radio head for massive-MIMO, millimetre wave mobile backhaul, 5G baseband, fixed wireless access, Remote-PHY nodes for cable, radar, test & measurement, SATCOM, and Milcom / Airborne Radio and other high performance RF applications.

5G Wireless

Zynq UltraScale+ RFSoC devices now make viable the most bandwidth intensive systems for next generation wireless infrastructure. 5G imperatives—ranging from 5X bandwidth, 100X user data rates, and 1000X greater network capacity—would be unattainable without breakthroughs at the system level. The integration of discrete RF data converters and signal chain optimization in Zynq UltraScale+ RFSoCs allow remote radio head for Massive-MIMO, wireless backhaul, and fixed wireless access to realize high channel density with 50-75 percent power and footprint reduction. Multiple integrated SD-FEC cores enable 10-20X system throughput vs. a soft core implementation for 5G baseband within stringent power and thermal constraints.

Cable Remote-PHY

Similarly, in next-generation cable broadband services, Zynq RFSoCs provide a combination of small form factor, power efficiency, and hardware flexibility to enable Remote-PHY systems. Distributed access architectures push DOCSIS 3.x PHY functionality from the centralized headend equipment to the Remote-PHY node located closer to consumers. By replacing inefficient analog optical transmission with ubiquitous Ethernet transport, network capacity, scale and performance improves. With RF integration and an LDPC FEC-enabled signal chain, RFSoCs ensure flexible R-PHY deployment for greater spectral efficiency prescribed by DOCSIS3.1.


Zynq RFSoCs also deliver the needed performance and adaptability for key government programs such as the Multi-function Phased Array Radar (MPAR) initiative to combine the functions of several national radar networks into a single system for aircraft and weather surveillance. Because these leading edge systems must operate in real time, the inherent integration of RF-Analog makes the Zynq UltraScale+ RFSoC an ideal solution. Zynq RFSoC devices are currently designed into the Rockwell Collins' Common Module beamformer for the DARPA Arrays at Commercial Time Scales (ACT) program, which aims to shorten design cycles and in-field updates, while pushing past traditional barriers for delivering radar arrays.

Most popular news in Electronics components

Silicon breakthrough could lead to bendable electronics
L-PICTM-enabled solutions for CWDM4
DML diodes enable high-speed optical communications
Xilinx unveils adaptable computing product technology
DLI V Series capacitors offer superior bypass filtering

All news in this channel | All news

Share this page

Want more like this? Register for our newsletter

Securing wireless data transport Bernd Hantsche | Rutronik
Securing wireless data transport
Wireless communication is part of the critical infrastructure of our lives, enabling services as diverse as TV and radio, smartphones, remote monitoring, garage-door openers and a rapidly expanding family of Internet of Things devices.
Online - Designing GaN Power Amplifier MMICs
Learn how to design high performance GaN power amplifier MMICs

More training courses

Forthcoming Events

    . . . . More Events

Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy