SIGFOX for M2M & IoT

- SIGFOX is a cellular style system that has been set up to provide low power low data rate, and low cost communications for remote connected devices.

SIGFOX tutorial includes

See also

M2M, machine to machine communications is rapidly developing and there is a need for the remote devices to be able to connect.

SIGFOX is a cellular style system that enables remote devices to connect using ultra-narrow band, UNB technology.

M2M and IoT or Internet of Things will give rise to billions of nodes that require connecting. Most of these will require only low bandwidth to transfer small amounts of data. Some will also require this to be connected over distances greater than those achievable simply by a transmitter on its own. For many of these applications, the traditional cellular phone systems are too complex to allow for very low power operation, and too costly to be feasible for many small low cost nodes.

SIGFOX M2M application areas

The SIGFOX network and technology is aimed at the low cost machine to machine application areas where wide area coverage is required. There are a number of applications that need this form of low cost wireless communications technology. Areas where the SIGFOX network may be used include:

  • Home and consumer goods
  • Energy related communications - in particular smart metering
  • Healthcare - in particular the mHealth applications that are starting to be developed
  • Transportation - this can include the automotive management
  • Remote monitoring and control
  • Retail including point of sale, shelf updating, etc
  • Security

What is SIGFOX

SIGFOX provides a cellular style network operator that provides a tailor-made solution for low-throughput Internet of Things and M2M applications.

For a host of applications from smart meters to control nodes that need connectivity over long ranges the only option until recently has been to use a cellular connection. This option has several disadvantages because cellular phone systems are focussed on voice and high data rates. They are not suited to low data rate connections as the radio interface is complex and this adds cost and power consumption - too much for most M2M / IoT applications.

The SIGFOX network is aimed at providing connectivity for a variety of applications and users. It is not aimed at one area, but at being for general use by a variety of different types of users. The SIGFOX network performance is characterised by the following:

  • Up to 140 messages per object per day
  • Payload size for each message is 12 bytes
  • Wireless throughput up to 100 bits per second

SIGFOX radio access network

In view of the low data rates used for IoT connections, the SIGFOX network employs Ultra-Narrow Band, UNB technology. This enables very low transmitter power levels to be used while still being able to maintain a robust data connection.

The SIGFOX radio link uses unlicensed ISM radio bands. The exact frequencies can vary according to national regulations, but in Europe the 868MHz band is widely used and in the US it is 915MHz.

The density of the cells in the SIGFOX network is based on an average range of about 30-50km in rural areas and in urban areas where there are usually more obstructions and noise is greater the range may be reduced to between 3 and 10km. Distances can be much higher for outdoor nodes where SIGFOX states line of sight messages could travel over 1000km.

The overall SIGFOX network topology has been designed to provide a scalable, high-capacity network, with very low energy consumption, while maintaining a simple and easy to rollout star-based cell infrastructure.

By Ian Poole

Share this page


Want more like this? Register for our newsletter








A flexible approach to better antennas Nick Robins | Alpha Micro Components
A flexible approach to better antennas
For the Internet of Things to become as ubiquitous as forecasts suggests, a lot of Things are going to need Internet connections, many of them wireless.
Training
Online - Designing GaN Power Amplifier MMICs
Learn how to design high performance GaN power amplifier MMICs

More training courses

Whitepapers
Low Loss Dynamic Compression of CPRI Baseband Data
Read this paper from Altera that describes a method of using Mu-Law compression for Gaussian-like waveforms providing an efficient methodology.

More whitepapers










Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy