Fourier Series Function and Formula

- basics of the Fourier mathematical series and the Fourier series function used in a variety of math or maths calculations and in particular for analysing electrical and other waveforms.

The Fourier series and its resulting Fourier analysis is used in mathematics and also within electronics engineering to analyse waveforms and process them in a process known as digital signal processing (DSP).

A Fourier series uses mathematical processes and decomposes a periodic function into a sum of simple oscillating functions, i.e. sines and cosines. By manipulating these series using mathematical processes it is possible to analyse and process waveforms using computer techniques. Often this is done in real time to enable complex processing to replace analogue circuitry. This has the advantage that waveforms can be processed more exactly to give very high levels of performance.

Basic Fourier series formula and function

For a continuous-time, T-periodic signal x(t), the N-harmonic Fourier series approximation can be written as the following function or formula:

x(t)   =   a0 + a1 cos (wot + q1) + a2 cos (2 wot + q2)   + ...
                              + ... + aN cos (N wot + qN)

the fundamental frequency wo is 2pi /T rad/sec;
the amplitude coefficients a1, ..., aN are non-negative
the radian phase angles satisfy 0 £ q1 , ..., qN < 2pi

<< Previous   |   Next >>

Share this page

Want more like this? Register for our newsletter

Investment in sensor technology is helping to ensure continued technological evolution Matthias Oettl | Heilind
Investment in sensor technology is helping to ensure continued technological evolution
Sensor technology is key to the successful operation of many automated processes - sensor information enables the systems to detector what is happening and enable feedback to be provided.
Online - Transmission Lines, S-Parameters & Smith Chart
Understand these essential concepts without complex mathematics

More training courses

R&S 4G LTE Whitepaper
Read this authoritative and comprehensive whitepaper on the 4G LTE-Advanced features and capabilities in this whitepaper from Rohde & Schwarz.

More whitepapers
 is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy