Semiconductor Holes & Electrons

- holes and electrons play a key part in semiconductor technology acting as charge carriers within the semiconductor lattice.

It is easy to see how electrons can move around the lattice and carry a current. However it is not quite so obvious for holes. This happens when an electron from a complete orbit moves to fill a hole, leaving a hole where it came from. Another electron from another orbit can then move in to fill the new hole and so forth. The movement of the holes in one direction corresponds to a movement of electrons in the other, hence an electric current.

From this it can be seen that either electrons or holes can carry charge or an electric current. As a result, they are known as charge carriers, holes being the charge carriers for a P-type semiconductor and electrons for an N-type semiconductor.

By Ian Poole


<< Previous   |   Next >>


Share this page


Want more like this? Register for our newsletter






Making light work of 'wireless wires' for the Internet of Things Maxine Hewitt | Alpha Micro Components
Making light work of 'wireless wires' for the Internet of Things
Maxine Hewitt of Alpha Micro Components looks at how ready designed and built RF modules can help bring connected products for the Internet of Things to market faster.
Training
Online - Transmission Lines, S-Parameters & Smith Chart
Understand these essential concepts without complex mathematics

More training courses










Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy