SDRAM Architecture

- notes and essential details about SDRAM architecture, typical architectures and why they are implemented.

There are a number of different elements to SDRAM architecture.

When using SDRAM it is necessary to have a basic understanding of the SDRAM architecture and as a result the way it operates.

SDRAM architecture also greatly impacts the design of the integrated circuit itself. Aspects such as the physical positioning of areas for the memory cells themselves as well as that for the control circuitry are of great importance.


Basic SDRAM architecture

The SDRAM architecture is organised with the SDRAM memory cells organised into a two dimensional array of rows and columns as would be expected.

Diagram showing the typical strcutire of an SD RAM, or SDRAM.
Basic SDRAM architecture

To address a particular memory cell it is necessary first to address the required row, and then the specific column. This selects the column within the row. This isolates the data storage elements to be read or written to.

An SDRAM row is called a page, as illustrated in the diagram. Once the row is open it is possible to address multiple columns addresses on the row. Using this technique improves the memory access speed, reducing latency because the row address does not have to be re-sent and set-up.

As a result, the row address is taken as the higher order address bit elements and the column as the lower ones.

The row and column elements are sent separately for a variety of reasons including the successive addressing of column elements once a row is open. As a result, the row and column addresses are multiplexed onto the same lines - this significantly reduces the package pin count, and this has a major impact on the overall chip cost as one major element of the chip cost is its package.

It should be noted, though, that the row address size is normally larger than the column address because the power of the chip is not related to the number of columns, but the number of rows does impact this figure.


SDRAM chip architecture

The circuit architecture of the SDRAM chip is one aspect of the SDRAM architecture. There are also the architecture aspects of the chip itself.

The actual chip SDRAM architecture will vary according to the manufacturer - each manufacturer will have its own favoured methods, and it will also depend to some extent on the size of the SDRAM.

The SDRAM architecture can be split into two main areas:

  • Array:   This element of the SDRAM architecture is the area of the chip where the memory cells are implemented. It is normally divided into a number of banks, which in turn is split into smaller areas which are termed segments.
  • Periphery:   This is the area of the chip where control and addressing circuitry is located as well as items such as line drivers and sense amplifiers. The chip periphery often separates the array banks and segments from each other.

Looking at the relative areas occupied by the array and the periphery it is possible to determine a figure of merit for the proportion of the overall area occupied by the actual memory. This is often termed the array or cell efficiency because the aim of the chip is to provide memory - the periphery, although important does not increase the size of memory.

The array or cell efficiency for the chip is normally expressed as a percentage:


Array / cell efficiency (%)   =   Array area   x   100   /   Overall chip area.


As the periphery does not contribute to the actual amount of memory on board, companies endeavour to increase the array efficiency. Figures are typically in the region of 60 - 70%.

By Ian Poole


<< Previous   |   Next >>


Share this page


Want more like this? Register for our newsletter






Refining IoT Technology to Address Demands of the Healthcare Market Mark Patrick | Mouser Electronics
Refining IoT Technology to Address Demands of the Healthcare Market
The Internet of Things, IoT is destined to affect many areas of everyday life - we expect it will include many areas like smart meters, remote control of lighting, but what about the healthcare market . . .
Whitepapers
Cost-Efficient & Extensible RF Spectrum Monitoring & Management
Discover how to use high-performance portable analyzers, open software and PC integration for field analysis, remote deployments, and efficient and effective spectrum management.

More whitepapers










Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy