Navigation:: Home >> Electronic components >> this page

EEPROM Technology Tutorial

- an overview, or tutorial about the basics of the EEPROM technology, a form of non-volatile semiconductor memory.

The EEPROM is a form of semiconductor memory chip that has been in use for many years. The initials EEPROM stand for Electrically Erasable Programmable Read Only Memory and this gives an insight into its method of operation. The EEPROM is a form of non-volatile memory that can be altered electrically.


EEPROM development

The EEPROM technology was one of the first forms of non-volatile semiconductor memory chip. Its development came out of the standard EPROM technology that was widespread in the late 1970s and 1980s. These EPROM memories could be programmed, typically with machine software, and then later erased by exposing the chip to UV light if the software needed to be changed. Although the erasure process took an hour or so, this was quite acceptable for development environments. However these semiconductor memories could not be erased electrically, and a totally electrical arrangement would have been more convenient.

In 1983, a development group at Intel under the leadership of George Perlegos developed a technology based on the existing EPROM technology. With an addition to the existing EPROM structure, the new EEPROM memory could be erased and programmed electrically. The first EEPROM device launched onto the market was the Intel 2816.

Later many of those with EEPROM development experience left Intel and set up a new company named Seeq Technology which developed and manufactured further EEPROM technology and other semiconductor memory devices.


EEPROM basics

The advantage of an EEPROM memory, apart from the fact that the data stored is non-volatile, is that it is possible to read data from it and also erase it and write data to it. To erase the data, a relatively high voltage is required, and early EEPROMs needed an external high voltage source. Later versions of these memory chips recognised the difficulty in many circuit designs of having an extra supply just for the EEPROM, and they incorporated the high voltage source into the EEPROM chip. In this way the memory device could run from a single supply, thereby considerably reducing the cost of an overall circuit using an EEPROM and simplifying the design.

When using an EEPROM it is necessary to remember that the read and write cycles are performed much slower than those experienced with RAM. As a result it is necessary to use the data stored in the EEPROM memory in such a way that this does not impede the operation of the overall system. Typically the data stored in it can be downloaded at start-up. It is also important to note that Write and erase operations are performed on a byte per byte basis.

EEPROM memory uses the same basic principle that is used by EPROM memory technology. Although there are several different memory cell configurations that can be sued the basic principle that is behind each memory cell is the same.

Often the memory cell will comprise two field effect transistors. One of these is the storage transistor. This has what is termed a floating gate. Electrons can be made to become trapped in this gate, and the presence or absence of electrons then equates to the data stored there.

The other transistor generally in the memory cell is what is known as the access transistor and it is required for the operational aspects of the EEPROM memory cell.


EEPROM memory types

Within the overall EEPROM family of memory devices, there are two main memory types that are available. The actual way in which the memory device is operated depends upon the flavour or memory type and hence its electrical interface.

  • Parallel EEPROM memory:   Parallel EEPROM devices typically have an 8 bit wide bus which allows it to cover the complete memory of many smaller processor applications. Most devices have chip select and write protect pins and some microcontrollers used to have an integrated parallel EEPROM for storage of the software.

    The operation of a parallel EEPROM is faster than that of a comparable serial EEPROM, and also the operation is simpler than that of an equivalent serial EEPROM. The disadvantages are that serial EEPROMs are larger as a result of the higher pin count. Also they have been decreasing in popularity in favour of serial EEPROM or Flash as a result of convenience and cost. Flash memory offers better performance at an equivalent cost, whereas serial EEPROMs offer advantages of small size.
  • Serial EEPROM memory:   The serial EEPROMs are more difficult to operate as a result of the fact that there are fewer pins are operations must be performed in a serial manner. As the data is transferred in a serial fashion, this also makes them much slower than their parallel EEPROM counterparts. There are several standard interface types: SPI, I2C, Microwire, UNI/O, and 1-Wire are five common types. These interfaces require between 1 and 4 controls signals for operation. Using these interfaces these semiconductor memory devices may be contained within an eight pin package. The result that the packages for these memory devices can be made so small is their chief advantage.

EEPROM memory failure modes

One of the main problems with EEPROM technology is its overall reliability. There are two ways in which these memory devices can fail:

  • Endurance :   It is found that during the rewrite operations of the EEPROM memory, the gate oxide in the floating-gate transistors of the memory cell gradually accumulate trapped electrons. The electric field associated with these trapped electrons combines with that of the wanted electrons in the floating gate. As a result the state where there are no electrons in the floating gate still has a residual field, and as this rises as more electrons become trapped, a condition eventually rises when it is not possible to differentiate between the threshold for the zero state cannot be detected and the cell is stuck in programmed state. The manufacturers usually specify minimal number of rewrite cycles being 10 million or more
  • Data retention time :   The data retention time is also very important, especially if the EEPROM contains software that is required for the operation of an item of electronics equipment. The data retention period is limited. This results from the fact that during storage, the electrons injected into the floating gate may drift through the insulator as it is not a perfect insulator, especially at increased temperature. This causes any charge being stored in the floating gate to be lost and the memory cell will revert to its erased state. The time taken for this to happen is very long, and manufacturers usually guarantee data retention of 10 years or more for most devices.

Summary

EEPROM technology si still widely used in many areas of the electronics industry. Although Flash has taken over many areas of the market previously dominated by EEPROM memory technology, it is nevertheless used in many areas, especially the serial EEPROM which can be accommodated in very small packages.

By Ian Poole


More Memory technologies . . . . .

Memory overview DRAM EEPROM FLASH
MRAM SDRAM SRAM P-RAM
FRAM      
<< Previous     Next >>

Share this page


Want more like this? Register for our newsletter






Wide CFAR transceiver enables Sub-GHz IoT Andreas Laute | Melexis
Wide CFAR transceiver enables Sub-GHz IoT
One key requirement for many Internet of Things transceivers is the carrier frequency acceptance range or CFAR as transmitters may not always have a very accurate carrier frequency generation scheme.
Whitepapers
LTE Advanced Pro and Road to 5G
Chapter 1 of the new book by Dahlman et al on the latest cellular developments and current 5G status. Get this free download.

More whitepapers










Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy