Semiconductor Memory Technologies and Types

- an overview of the different types of semiconductor memory and technologies used in electronic circuits.

Semiconductor memory technology is an essential element of today's electronics. Normally based around semiconductor technology, memory is used in any equipment that uses a processor of one form or another.

Indeed as processors have become more popular and the number of microprocessor controlled items has increased so has the requirement for semiconductor memory. An additional driver has been the fact that the software associated with the processors and computers has become more sophisticated and much larger, and this too has greatly increased the requirement for semiconductor memory. In view of the pressure on memory, new and improved semiconductor memory technologies are being researched and development can be very rapid. Nevertheless, the more mature semiconductor memory technologies are still in widespread use and will remain so for many years to come.

In addition to this new applications such as digital cameras, PDAs and many more applications have given rise to the need to memories. Accordingly it is not uncommon to see semiconductor memories of 8 Gbyte and much more required for various applications.

A view of a typical computer memory card
An example of semiconductor memory technology used in computers

With the rapid growth in the requirement for semiconductor memories there have been a number of technologies and types of memory that have emerged. Names such as ROM, RAM, EPROM, EEPROM, Flash memory, DRAM, SRAM, SDRAM, and the very new MRAM can now be seen in the electronics literature. Each one has its own advantages and area in which it may be used.


Types of semiconductor memory

Electronic semiconductor memory technology can be split into two main types or categories, according to the way in which the memory operates:

  • RAM - Random Access Memory:   As the names suggest, the RAM or random access memory is a form of semiconductor memory technology that is used for reading and writing data in any order as required. It is used for such applications as the computer or processor memory where variables and other stored and are required on a random basis. Data is stored and read many times to and from this type of memory.
  • ROM - Read Only Memory:  A ROM is a form of semiconductor memory technology used where the data is written once and then not changed. In view of this it is used where data needs to be stored permanently, even when the power is removed - many memory technologies lose the data once the power is removed.

    As a result, this type of semiconductor memory technology is widely used for storing programs and data that must survive when a computer or processor is powered down. For example the BIOS of a computer will be stored in ROM. As the name implies, data cannot be easily written to ROM. Depending on the technology used in the ROM, writing the data into the ROM initially may require special hardware. Although it is often possible to change the data, this gain requires special hardware to erase the data ready for new data to be written in.

Both of these categories of semiconductor technology are widely used. Each type being used in different areas and applications within microprocessor based electronics systems.


Semiconductor memory technologies

There is a large variety of types of ROM and RAM that are available. These arise from the variety of applications and also the number of technologies available. This means that there is a large number of abbreviations or acronyms and categories for memories ranging from Flash to MRAM, PROM to EEPROM, and many more:

  • PROM:     This stands for Programmable Read Only Memory. It is a semiconductor memory which can only have data written to it once - the data written to it is permanent. These memories are bought in a blank format and they are programmed using a special PROM programmer. Typically a PROM will consist of an array of fuseable links some of which are "blown" during the programming process to provide the required data pattern.
  • EPROM:     This is an Erasable Programmable Read Only Memory. This form of semiconductor memory can be programmed and then erased at a later time. This is normally achieved by exposing the silicon to ultraviolet light. To enable this to happen there is a circular window in the package of the EPROM to enable the light to reach the silicon of the chip. When the PROM is in use, this window is normally covered by a label, especially when the data may need to be preserved for an extended period.

    The PROM stores its data as a charge on a capacitor. There is a charge storage capacitor for each cell and this can be read repeatedly as required. However it is found that after many years the charge may leak away and the data may be lost. Nevertheless, this type of semiconductor memory used to be widely used in applications where a form of ROM was required, but where the data needed to be changed periodically, as in a development environment, or where quantities were low.
  • EEPROM:     This is an Electrically Erasable Programmable Read Only Memory. Data can be written to it and it can be erased using an electrical voltage. This is typically applied to an erase pin on the chip. Like other types of PROM, EEPROM retains the contents of the memory even when the power is turned off. Also like other types of ROM, EEPROM is not as fast as RAM. Read more about EEPROM
  • Flash memory:     Flash memory may be considered as a development of EEPROM technology. Data can be written to it and it can be erased, although only in blocks, but data can be read on an individual cell basis. To erase and re-programme areas of the chip, programming voltages at levels that are available within electronic equipment are used. It is also non-volatile, and this makes it particularly useful. As a result Flash memory is widely used in many applications including memory cards for digital cameras, mobile phones, computer memory sticks and many other applications. Read more about Flash memory
  • DRAM:     Dynamic RAM is a form of random access memory. DRAM uses a capacitor to store each bit of data, and the level of charge on each capacitor determines whether that bit is a logical 1 or 0. However these capacitors do not hold their charge indefinitely, and therefore the data needs to be refreshed periodically. As a result of this dynamic refreshing it gains its name of being a dynamic RAM. DRAM is the form of semiconductor memory that is often used in equipment including personal computers and workstations where it forms the main RAM for the computer. Read more about DRAM
  • SRAM:     Static Random Access Memory. This form of semiconductor memory gains its name from the fact that, unlike DRAM, the data does not need to be refreshed dynamically. It is able to support faster read and write times than DRAM (typically 10 ns against 60 ns for DRAM), and in addition its cycle time is much shorter because it does not need to pause between accesses. However it consumes more power, is less dense and more expensive than DRAM. As a result of this it is normally used for caches, while DRAM is used as the main semiconductor memory technology. Read more about SRAM
  • SDRAM:     Synchronous DRAM. This form of semiconductor memory can run at faster speeds than conventional DRAM. It is synchronised to the clock of the processor and is capable of keeping two sets of memory addresses open simultaneously. By transferring data alternately from one set of addresses, and then the other, SDRAM cuts down on the delays associated with non-synchronous RAM, which must close one address bank before opening the next. Read more about SDRAM
  • MRAM:     This is Magneto-resistive RAM, or Magnetic RAM. It is a non-volatile RAM memory technology that uses magnetic charges to store data instead of electric charges. Unlike technologies including DRAM, which require a constant flow of electricity to maintain the integrity of the data, MRAM retains data even when the power is removed. An additional advantage is that it only requires low power for active operation. As a result this technology could become a major player in the electronics industry now that production processes have been developed to enable it to be produced. Read more about MRAM
  • P-RAM / PCM:     This type of semiconductor memory is known as Phase change Random Access Memory, P-RAM or just Phase Change memory, PCM. It is based around a phenomenon where a form of chalcogenide glass changes is state or phase between an amorphous state (high resistance) and a polycrystalline state (low resistance). It is possible to detect the state of an individual cell and hence use this for data storage. Currently this type of memory has not been widely commercialised, but it is expected to be a competitor for flash memory. Read more about P-RAM / PCM
  • F-RAM:     Ferroelectric RAM is a random-access memory technology that has many similarities to the standard DRAM technology. The major difference is that it incorporates a ferroelectric layer instead of the more usual dielectric layer and this provides its non-volatile capability. As it offers a non-volatile capability, F-RAM is a direct competitor to Flash. Read more about F-RAM

Summary

Semiconductor memory technology is moving forward apace. Not only are the sizes of memories being increased, and the data densities improving, but new forms of semiconductor memory such as MRAM are being introduced. With the requirements for ever larger, faster and lower power memories always increasing, this area of technology will remain one of the most dynamic in the electronics industry.

By Ian Poole


. . . .   |   Next >>


Share this page


Want more like this? Register for our newsletter








capture force sensing Ian Crosby | zytronic Ltd
Z-axis sensing unlocks new touch potentials
Ian Crosby looks at some new innovative developments for transitioning touch screen technology from smaller devices used on smartphones up to much larger devices.
Training
Online - Transmission Lines, S-Parameters & Smith Chart
Understand these essential concepts without complex mathematics

More training courses

Whitepapers
Low Loss Dynamic Compression of CPRI Baseband Data
Read this paper from Altera that describes a method of using Mu-Law compression for Gaussian-like waveforms providing an efficient methodology.

More whitepapers










Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy