Understanding Diode Specifications & Parameters

- a summary of the diode specifications and diode parameters and ratings seen in datasheets with explanations of what they mean.

Diode datasheets provide a large amount of data - diode specifications and parameters about he diodes. The exact explanations of what these diode specifications and parameters are may not always be available.

The list below provides a summary of some of the more widely used diode specifications, parameters and limits detailing their meanings.

Diode specifications characteristics and parameters

The list below provides details of the various diode characteristics, and diode parameters found in the datasheets and specifications for diodes.

  • Semiconductor material:   The semiconductor material used in the PN junction diode is of paramount importance because the material used affects many of the major diode characteristics and properties. Silicon is the most widely used material as if offers high levels of performance for most applications and it offers low manufacturing costs. The other material that is used is germanium. Other materials are generally reserved for more specialist diodes. The semiconductor material choice is of particular importance as it governs the turn on voltage for the diode - around 0.6volts for silicon and 0.3 volts for germanium, etc..
  • Forward voltage drop (Vf):   Any electronics device passing current will develop a resulting voltage across it and this diode characteristic is of great importance, especially for power rectification where power losses will be higher for a high forward voltage drop. Also RF diodes often need a small forward voltage drop as signals may be small but still need to overcome it.

    The voltage across a PN junction diode arise for two reasons. The first of the nature of the semiconductor PN junction and results from the turn-on voltage mentioned above. This voltage enables the depletion layer to be overcome and for current to flow. The second arises from the normal resistive losses in the device. As a result a figure for the forward voltage drop are a specified current level will be given. This figure is particularly important for rectifier diodes where significant levels of current may be passed.
  • Peak Inverse Voltage (PIV):   This diode characteristics is the maximum voltage a diode can withstand in the reverse direction. This voltage must not be exceeded otherwise the device may fail. This voltage is not simply the RMS voltage of the incoming waveform. Each circuit needs to be considered on its own merits, but for a simple single diode half wave rectifier with some form of smoothing capacitor afterwards, it should be remembered that the capacitor will hold a voltage equal to the peak of the incoming voltage waveform. The diode will then also see the peak of the incoming waveform in the reverse direction and therefore under these circumstances it will see a peak inverse voltage equal to the peak to peak value of the waveform.
  • Maximum forward current:   When designing a circuit that passes any levels of current it is necessary to ensure that the maximum current levels for the diode are not exceeded. As the current levels rise, so additional heat is dissipated and this needs to be removed.
  • Leakage current:   If a perfect diode were available, then no current would flow when it was reverse biased. It is found that for a real PN junction diode, a very small amount of current flow in the reverse direction as a result of the minority carriers in the semiconductor. The level of leakage current is dependent upon three main factors. The reverse voltage is obviously significant. It is also temperature dependent, rising appreciably with temperature. It is also found that it is very dependent upon the type of semiconductor material used - silicon is very much better than germanium.

    The leakage current characteristic or specification for a PN junction diode is specified at a certain reverse voltage and particular temperature. The specification is normally defined in terms of in microamps, μA or picoamps, pA.
  • Junction capacitance:   All PN junction diodes exhibit a junction capacitance. The depletion region is the dielectric spacing between the two plates which are effectively formed at the edge of the depletion region and the area with majority carriers. The actual value of capacitance being dependent upon the reverse voltage which causes the depletion region to change (increasing reverse voltage increases the size of the depletion region and hence decreases the capacitance). This fact is used in varactor or varicap diodes to good effect, but for many other applications, especially RF applications this needs to be minimised. As the capacitance is of importance it is specified. The parameter is normally detailed as a given capacitance (in pF) at a given voltage or voltages. Also special low capacitance diodes are available for many RF applications.
  • Package type:   Diodes can be mounted in a variety of packages according to their applications, and in some circumstances, especially RF applications, the package is a key element in defining the overall RF diode characteristics. Also for power applications where heat dissipation is important, the package can define many of the overall diode parameters because high power diodes may require packages that can be bolted to heatsinks, whereas small signal diodes may be available in leaded formats or as surface mount devices.
  • :  
  • By Ian Poole

    << Previous   |   Next >>

    Share this page

    Want more like this? Register for our newsletter

Perpetual Motion Machines - Always Giving 110% Mark Patrick | Mouser Electronics
Perpetual Motion Machines - Always Giving 110%
The perpetual motion machine is something that has been sought by inventors from the very earliest days of science . . . . but does the concept have links to the IIoT?
mmWave The Battle of the Bands
5G mobile communications will use mmWave for many short range wide band links - but which microwave band will be used? Find out more in this informative white paper.

More whitepapers

Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy