Op Amp Slew Rate: Tutorial; Formula; Calculator

- overview of op-amp slew rate, what it is, how it affects operational amplifier circuits and an op amp slew rate calculator.

The slew rate of an operational amplifier may be important in many applications.

The op amp slew rate is particularly important parameter in applications where the output is required to switch from one level to another quickly. In these applications the rate at which the op amp can change between the two levels is important.

Op amp slew rate basics

The slew rate of an op amp or any amplifier circuit is the rate of change in the output voltage caused by a step change on the input.

It is measured as a voltage change in a given time - typically V / µs or V / ms.

Op amp slew rate illustration
Op amp slew rate illustration

A typical general purpose device may have a slew rate of 10 V / microsecond. This means that when a large step change is placed on the input, the device would be able to provide an output 10 volt change in one microsecond.

The figures for slew rate change are dependent upon the type of operational amplifier being used. Low power op-amps may only have figures of a volt per microsecond, whereas there are fast operational amplifiers capable to providing rates of 1000 V / microsecond.

Op amps may have different slew rates for positive and negative going transitions because of the circuit configuration. They have a complementary output to pull the signal up and down and this means the two sides of the circuit cannot be exactly the same. However it is often assumed that they have reasonably symmetrical performance levels.

Slew rate rationale

The slew rate issues arise from the internal circuitry within the op amp. There are two main reasons for the limitations of most chips:

  • Frequency compensation:   The capacitors used within the chip to reduce the high frequency response have a marked effect on the slew rate. Limiting the frequency response also limits the rate of change that can occur at the output, and hence it affects the overall op amp slew rate.
  • Output driver limitations:   Within the chip, and particularly within the output driver, the low current levels limit the rate at which change can occur. This limits the slew rate of the op amp. It is found that this is the area of the performance where rise and fall slew rates may be different. This results from the different ways that the chip increases and decreases the output voltage. For example the output may employ a form of complementary output stage. The slightly different characteristics of each half will cause a small amount on difference between the rise and fall slew rate capabilities.

Slewing distortion

If an op amp is operated above its slew rate limit, signals will become distorted. The easiest way to see this is to look at the example of a sine wave.

The maximum rate of voltage change occurs at the zero crossing point.

Maximum rate of change of sine wave occurs at zero crossing point
Maximum rate of change of sine wave occurs at zero crossing point

It is possible to find the maximum frequency or voltage that can be accommodated. A sine wave with a frequency of f Hertz and peak voltage V volts requires an operational amplifier with a slew rate of 2 x Π x f x V volts per second. This is required to ensure the maximum slew rate requirement which occurs at the zero crossing point can be met.

Op amp slewing distortion
Op amp slewing distortion (limit)

As can be seen in the diagram, in the limit, the op amp slewing distortion will result in the creation of a triangular waveform. If the frequency is increased the op amp will be even less able to keep up and therefore the amplitude of the output waveform will decrease.

The slew rate may also not be linear over the whole range. As a result the waveform may exhibit a faster rise for the first part of the change, then reverting to the more expected slew rate.

Slew rate calculation & formula

It is relatively easy to calculate the slew rate of an amplifier that is required for a given application from a knowledge of the maximum voltage and frequency required.

To give distortion free operation, the slew rate of the amplifier, the simple formula below can be used.

The slew rate formula where the slew rate is 2 * pi * f * V where f is the maximum frequency and V is the voltage of the waveform.

    slew rate is measured in volts / second, although actual measurements are often given in v/µs
    f = the highest signal frequency, Hz
    V = the maximum peak voltage of the signal.

As an example, take the scenario where an op amp is required to amplify a signal with a peak amplitude of 5 volts at a frequency of 25kHz. An op amp with a slew rate of at least 2 π x 25 000 x 5 = 0.785V/µs would be required.

Slew rate calculator

While it is possible to manually calculate the slew rate required for an op-amp or other amplifier, the simple op-amp slew rate calculator below provides a much easier option.

Op Amp Slew Rate Calculator

For Sine Wave with Peak Voltage V


Enter Values:

Frequency:   Hz
Waveform Peak Voltage :   V.


Required Slew Rate:   V/µs

Using this op amp slew rate calculator, it is possible to determine the required slew rate for an operational amplifier.

By Ian Poole

<< Previous   |   Next >>

Share this page

Want more like this? Register for our newsletter

Wide CFAR transceiver enables Sub-GHz IoT Andreas Laute | Melexis
Wide CFAR transceiver enables Sub-GHz IoT
One key requirement for many Internet of Things transceivers is the carrier frequency acceptance range or CFAR as transmitters may not always have a very accurate carrier frequency generation scheme.
Online - Effective Spectrum Analyzer Measurements
Learn how to make spectrum analyzer measurements at RF and microwave frequencies

More training courses

Low Loss Dynamic Compression of CPRI Baseband Data
Read this paper from Altera that describes a method of using Mu-Law compression for Gaussian-like waveforms providing an efficient methodology.

More whitepapers

Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy