LTE MIMO: Multiple Input Multiple Output Tutorial

- MIMO is used within LTE to provide better signal performance and / or higher data rates by the use of the radio path reflections that exist.

MIMO, Multiple Input Multiple Output is another of the LTE major technology innovations used to improve the performance of the system. This technology provides LTE with the ability to further improve its data throughput and spectral efficiency above that obtained by the use of OFDM.

Although MIMO adds complexity to the system in terms of processing and the number of antennas required, it enables far high data rates to be achieved along with much improved spectral efficiency. As a result, MIMO has been included as an integral part of LTE.

LTE MIMO basics

The basic concept of MIMO utilises the multipath signal propagation that is present in all terrestrial communications. Rather than providing interference, these paths can be used to advantage.

The general outline of a MIMO system showing the various paths between the multiple antennas on both the transmitter and receiver.
General Outline of MIMO system

The transmitter and receiver have more than one antenna and using the processing power available at either end of the link, they are able to utilise the different paths that exist between the two entities to provide improvements in data rate of signal to noise.


Note on MIMO:

Two major limitations in communications channels can be multipath interference, and the data throughput limitations as a result of Shannon's Law. MIMO provides a way of utilising the multiple signal paths that exist between a transmitter and receiver to significantly improve the data throughput available on a given channel with its defined bandwidth. By using multiple antennas at the transmitter and receiver along with some complex digital signal processing, MIMO technology enables the system to set up multiple data streams on the same channel, thereby increasing the data capacity of a channel.

Click on the link for a MIMO tutorial


MIMO is being used increasingly in many high data rate technologies including Wi-Fi and other wireless and cellular technologies to provide improved levels of efficiency. Essentially MIMO employs multiple antennas on the receiver and transmitter to utilise the multi-path effects that always exist to transmit additional data, rather than causing interference.

LTE MIMO

The use of MIMO technology has been introduced successively over the different releases of the LTE standards.

MIMO has been a cornerstone of the LTE standard, but initially, in releases 8 and 9 multiple transmit antennas on the UE was not supported because in the interested of power reduction, only a single RF power amplifier was assumed to be available.

It was in Rel. 10 that a number of new schemes were introduced. Closed loop spatial multiplexing for SU-MIMO as well as multiple antennas on the UE.

LTE MIMO modes

There are several ways in which MIMO is implemented in LTE. These vary according to the equipment used, the channel function and the equipment involved in the link.

  • Single antenna:   This is the form of wireless transmission used on most basic wireless links. A single data stream is transmitted on one antenna and received by one or more antennas. It may also be referred to as SISO: Single In Single Out or SIMO Single In Multiple Out dependent upon the antennas used. SIMO is also called receive diversity.
  • Transmit diversity:   This form of LTE MIMO scheme utilises the transmission of the same information stream from multiple antennas. LTE supports two or four for this technique.. The information is coded differently using Space Frequency Block Codes. This mode provides an improvement in signal quality at reception and does not improve the data rate. Accordingly this form of LTE MIMO is used on the Common Channels as well as the Control and Broadcast channels.
  • Open loop spatial multiplexing:   This form of MIMO used within the LTE system involves sending two information streams which can be transmitted over two or more antennas. However there is no feedback from the UE although a TRI, Transmit Rank Indicator transmitted from the UE can be used by the base station to determine the number of spatial layers.
  • Close loop spatial multiplexing :   This form of LTE MIMO is similar to the open loop version, but as the name indicates it has feedback incorporated to close the loop. A PMI, Pre-coding Matrix Indicator is fed back from the UE to the base station. This enables the transmitter to pre-code the data to optimise the transmission and enable the receiver to more easily separate the different data streams.
  • Closed loop with pre-coding:   This is another form of LTE MIMO, but where a single code word is transmitted over a single spatial layer. This can be sued as a fall-back mode for closed loop spatial multiplexing and it may also be associated with beamforming as well.
  • Multi-User MIMO, MU-MIMO:   This form of LTE MIMO enables the system to target different spatial streams to different users.
  • Beam-forming:   This is the most complex of the MIMO modes and it is likely to use linear arrays that will enable the antenna to focus on a particular area. This will reduce interference, and increase capacity as the particular UE will have a beam formed in their particular direction. In this a single code word is transmitted over a single spatial layer. A dedicated reference signal is used for an additional port. The terminal estimates the channel quality from the common reference signals on the antennas.

By Ian Poole


<< Previous | Next >>


Share this page


Want more like this? Register for our newsletter






What to consider when incorporating an intelligent touch screen display into your product Markku Rihonnen | 4D Systems
What to consider when incorporating an intelligent touch screen display into your product
Gone are the days of rotary switches, push buttons and seven segment displays. Incorporating touch screen displays into embedded designs is the trend, accelerated of course by consumer adoption of the smartphone.
Training
Online - Effective Spectrum Analyzer Measurements
Learn how to make spectrum analyzer measurements at RF and microwave frequencies

More training courses










Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy