Dipole antenna length calculation & formula

- notes and details about the dipole antenna length calculation & formula for a half wave dipole.

The length of a dipole is the main determining factor for the operating frequency of the dipole antenna. Typically a dipole is a half wavelength long, or a multiple of half wavelengths.

However the dipole length is not exactly the same as the wavelength in free space - it is slightly shorter.


Dipole length variation from free space length

Although the antenna may be an electrical half wavelength, or multiple of half wavelengths, it is not exactly the same length as the wavelength for a signal travelling in free space. There are a number of reasons for this and it means that an antenna will be slightly shorter than the length calculated for a wave travelling in free space.

For a half wave dipole the length for a wave travelling in free space is calculated and this is multiplied by a factor "A". Typically it is between 0.96 and 0.98 and is mainly dependent upon the ratio of the length of the antenna to the thickness of the wire or tube used as the element. Its value can be approximated from the graph:

Factor A used for calculating the length of a dipole

Multiplication factor "A" used for calculating the length of a dipole


Dipole length formula

It is quite easy to use

In order to calculate the length of a half wave dipole the simple formulae given below can be used:

Length (metres) = 150 x A / frequency in MHz

Length (inches) = 5905 x A / frequency in MHz

Using these formulae it is possible to calculate the length of a half wave dipole. Even though calculated lengths are normally quite repeatable it is always best to make any prototype antenna slightly longer than the calculations might indicate. This needs to be done because changes in the thickness of wire being used etc may alter the length slightly and it is better to make it slightly too long than too short so that it can be trimmed so that it resonates on the right frequency. It is best to trim the antenna length in small steps because the wire or tube cannot be replaced very easily once it has been removed.

Computer simulation programmes are normally able to calculate the length of a dipole very accurately, provided that all the variables and elements that affect the operation of the dipole can be entered accurately so that the simulation is realistic and therefore accurate. The major problem is normally being able to enter the real-life environmental data accurately to enable a realistic simulation to be undertaken.

By Ian Poole


<< Previous     |     Next >>


Share this page


Want more like this? Register for our newsletter








The Art of Electronics 3rd Edition
The Art of Electronics 3rd Edition

Paul Horowitz & Winfield Hill
The Art of Electronics was the best book for electronic circuit designers and...
Read more . .

USA bookstore UK bookstore
Guidebooks for electronics engineers
Training
Online - Effective Spectrum Analyzer Measurements
Learn how to make spectrum analyzer measurements at RF and microwave frequencies

More training courses

Books for electronics engineers
Whitepapers
LTE for Automotive Applications
Read the insight in this white paper from u-Blox about LTE for automotive applications. Discover all you need to know.

More whitepapers










Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy