02 Oct 2012

The Wirewound Resistor Today

Phil Ebbert, VP Engineering, Riedon Inc. reports on the wirewound resistor and the fact that it is widely used today

Like every component, the fabrication technology used in resistor manufacture has changed over time and resistive films have made a significant contribution in allowing the cost-effective mass production of devices that are increasingly miniaturized.

Yet the traditional wirewound resistor, despite a substantial decline in the number of manufacturers of this component in recent decades, remains the best solution for many specialized applications.

The wirewound resistor is still used in large quantities where particular elements of performance are required. In these areas, the wirewound resistor can greatly outperform many other resistor technologies.

Construction advantages

One reason for the survival of wirewound resistors is that all of the alternative fabrication techniques have drawbacks. For example, the use of conductive inks to produce carbon film or thick film resistors can produce very low-cost components but the resulting devices have limited pulse handling, no better than 0.1% initial tolerance and poor long-term stability, typically 500 to 1000ppm/year. The resistance is temperature dependent, with a temperature coefficient of resistance (TCR) of around 50 to 100ppm/°C. Moreover, relatively high current noise of -18 dB to -10 dB is typical, where:

dB = 20 x log (noise voltage [in μV]/DC voltage [in V])

Wirewound resistor advantages

 Figure 1: Easy customization is one of the major advantages of wirewound resistor technology

Carbon composition resistors, made by binding conductive carbon powder and an insulating material (usually ceramic) in a resin are some of the earliest resistor types. The proportions of carbon and insulating material determine the desired resistance value. It’s difficult to achieve accurate values so ±5% is often the best initial tolerance available and they exhibit poor temperature stability with a TCR of some 1000ppm/C. These resistors also have high current noise (-12 dB to +6 dB ) and suffer from poor stability over time.

Metal film types perform better. They deliver improved tolerance (as good as 0.01%), TCR of 10 to 200ppm/°C and stability of 200 to 600ppm/yr. But these figures still cannot match those of wirewound alternatives, and their pulse handling capability is significantly inferior.

As a result of the limitations of other technologies, wirewound components continue to be used in many applications. They can handle high level pulses and transients, can dissipate substantial amounts of power (some are rated at up to 2.5kW), and they can be made with great precision – some have initial tolerances down to 0.005%. Just as importantly, they are stable (15 to 50ppm/yr), maintaining their precision over time because they are made with stable materials. Wirewound resistors are also among the lowest current noise resistors available at -38dB.

The basic structure of a wirewound resistor has remained unchanged for many years. As the name suggests, a resistance wire is wound around a central core or former, usually made of ceramic. Metal end-caps are pressed onto the core, and the resistance wire welded to them. Finally, the assembly is encapsulated to protect it from moisture and physical damage.

Wirewoumd resistor construction

 Figure 2: The fundamental construction of a wirewound resistor has changed little over time.

Wirewound construction also produces devices that are easy to customize, so engineers have the freedom to specify exactly what they need, even if the final quantities required are in the hundreds, rather than tens of thousands. And although familiar, the technology has not stood still. For instance, advances in materials science allow the construction of devices with tightly controlled response across a range of temperatures, with TCR as low as 1ppm/°C.

The individual component’s resistance is determined by the length, cross-sectional area, and material (and hence resistivity) of the resistance wire. In terms of material choice, a small diameter copper wire 30m long may have a resistance of a few ohms. In contrast, the higher resistivity of a nickel-chrome alloy means that a small diameter wire only 30cm long made of this material may have a resistance of several thousand ohms.

Manufacturers of wirewound resistors offer a choice of metal alloys and sizes and the fabrication characteristics go a long way to explaining the advantages. When a high precision resistor is required, for example, a longer resistance wire can be used, allowing the value to be trimmed to great accuracy by removing a few centimetres (or even millimetres) of wire.

Temperature stability

The choice of material is also the major factor influencing the temperature characteristic of the resistor. For example, low-TCR “RO-800” alloy is formulated to have a TCR of 5 to 10ppm/°C. For comparison, pure nickel has a TCR of 6700ppm/°C, and copper a TCR of 3900ppm/°C.

The material choice therefore allows the manufacturer to tailor the resistor to desired characteristics. In general, low TCR is desirable. However, in some situations, such as temperature sensing and compensation applications, the opposite may be true, since the specific purpose of these components is to respond to changes in temperature.

Wirewound components are sometime chosen for their ability to continue operating in extreme temperatures. Devices such as Riedon’s UT series of axial resistors, for example, operate from -55°C to 275°C, and continue to function at even higher temperatures with de-rating. These capabilities make the technology well-suited for use in the aerospace industry, and in applications such as fire suppression systems.

Power handling and energy dissipation characteristics are similarly linked to the physical construction of the device. As a general rule, a resistor with a larger mass can safely absorb and dissipate more instantaneous power and more energy overall, and this is another strength of wirewound technology.

Pulse performance

One common use for wirewound resistors is in pulse handling. A device such as a medical defibrillator needs to dissipate a large amount of energy in a very short time, putting its electrical components under a high degree of stress.

To protect these components from failure, engineers typically design-in a resistor that can absorb the energy of a significant millisecond current surge. In another application, wirewound resistors are used to protect a metering module installed in a solid state electricity meter.

Here, the resistor absorbs the high current generated when a metal oxide varistor (MOC) clamps in response to a voltage surge on the grid. Surges can have many causes, including lightning, inductive loads (motors), capacitor banks, switchgear, or even switching heating and ventilation systems in and out of circuit. For these types of application, resistors in the UT series mentioned above are sometimes used. They can withstand over 1000 Joules. Values range from 0.02 Ohms to 260kΩ with tolerances down to ±0.01% and TCR down ±20ppm/°C.

Determining the right pulse handling capabilities for a particular application is not always a straightforward task. Dealing with inrush current implies different requirements than transient suppression. It is not easy to capture within a datasheet all of the information required to make such a choice.

For pulses of up to five seconds, the industry standard specification is a withstand of five-times rated power for five seconds, so a 5W resistor must be able to handle 25W for 5 seconds (125 Joules), regardless of package size or resistance value.

For shorter pulses, the mass of the resistance wire determines the Joule rating, which is then dependent upon resistor value and package type, including its size and whether it’s an axial or surface mount component. Repetition rate and pulse shape - square, triangular or irregular – also have to be taken into account.

Wirewoumd resistors and pulse performance

 Figure 3: Pulse shape, repetition rate and duration all need to be understood in order to calculate the required energy handling capabilities.

In current sensing applications, designers have different requirements. For example, monitoring battery life in a handheld device generally requires a small package, whereas measurements in industrial or medical equipment might necessitate high precision and high current withstand.

Wirewound devices excel where accuracy is important. For instance, four-terminal components are available in values from 0.01Ω to 1kΩ with tolerances down to 0.005% and current handling capability of up to 25A.

The most commonly cited disadvantage of wirewound resistors, particularly with respect to high frequency applications, is their self-inductance. However, this can overcome with a bifilar winding technique, shown in Figure 4, in which the turns are arranged so that two opposing magnetic fields are created ( one clockwise and the other counter-clockwise ), cancelling out the inductance, except the residual amount accounted for by terminations and connecting leads. Inductance is typically reduced by 90% compared to a standard part.

Wirewoumd resistor inductance reduction Wirewoumd resistor inductance reduction

 Figure 4: Non-inductive winding can produce wirewound resistors with minimal self-inductance.

Conclusion

From Joule-rated devices for energy absorption to miniaturized components for current temperature sensing, wirewound resistors continue to offer significant advantages over alternatives in many applications.

Page 1 of 1


About the author

Phil Ebbert is in charge of resistor development at Riedon Inc. He is also responsible for our technology projects, including equipment, testing and process design. Mr. Ebbert has 15 years’ resistor engineering experience and led Riedon’s expansion from wirewound resistors into related film and foil technologies. He studied physics, optics, and computer science at Carnegie Mellon University.

Riedon has been at the cutting edge of resistor solutions since the company’s formation more than 45 years ago in 1960. The company produces many forms of resistor including Wirewound, Thick & Thin Film, and also Foil resistive products that are used in industries as diverse as: Aerospace, Military and Instrumentation. The customer base for Riedon varies from the largest Fortune 100 conglomerates, global contract manufacturers, to the smallest of independent companies. Today Riedon employs more than 130 team members worldwide and has manufacturing, technical support, and sales facilities in the U.S., Europe, Asia, and Mexico.

Most popular articles in Electronics components

  • 2018 Electronic Component Distribution Forecast
  • The Wirewound Resistor Today
  • Trends in Power Semiconductors
  • Gallium Nitride: its rise and rise
  • electronica 2014 showcases new electronics technology
  • Share this page


    Want more like this? Register for our newsletter






    Making light work of 'wireless wires' for the Internet of Things Maxine Hewitt | Alpha Micro Components
    Making light work of 'wireless wires' for the Internet of Things
    Maxine Hewitt of Alpha Micro Components looks at how ready designed and built RF modules can help bring connected products for the Internet of Things to market faster.
    Training
    Online - Fundamentals of Modern RF and Wireless Communications Engineering
    This on-line course enables you to quickly get up-to-speed & understand key concepts of modern radio frequency, RF & wireless communications systems

    More training courses










    Radio-Electronics.com is operated and owned by Adrio Communications Ltd and edited by Ian Poole. All information is © Adrio Communications Ltd and may not be copied except for individual personal use. This includes copying material in whatever form into website pages. While every effort is made to ensure the accuracy of the information on Radio-Electronics.com, no liability is accepted for any consequences of using it. This site uses cookies. By using this site, these terms including the use of cookies are accepted. More explanation can be found in our Privacy Policy